Copying vector to vector:

for (int i = 0; i < n; i++)

 dest[i] = src[i];

(or memcpy(dest, src, n * sizeof(float));)

xdsp.Copy_V_V(dest, src, n);

The leftmost ‘V’ indicates that the destination operand is a vector. The rightmost ‘V’ indicates that the source operand is also a vector.

Multiplying vector by scalar:

for (int i = 0; i < n; i++)

 dest[i] *= s;

xdsp.Mul_V_S(dest, n, s);

Multiplying vector by a linear function:

for (int i = 0, a = 10.0f; i < n; i++, a += 0.1f)

 dest[i] *= a;

xdsp.Mul_V_L(dest, n, 10.0f, 0.1f);

Multiplying vector by an exponential function:

for (int i = 0, a = 10.0f; i < n; i++, a *= 0.99f)

 dest[i] *= a;

xdsp.Mul_V_E(dest, n, 10.0f, 0.99f);

Converting integer vector to floating point vector:

for (int i = 0; i < n; i++)

 dest[i] = (int)src[i];

xdsp.Copy_V_VI(dest, src, n);

VI = Vector Integer

Multiplying two interleaved vectors by two scalars:

for (int i = 0; i < n; i++)

{

 dest[i*2+0] *= 0.1f;

 dest[i*2+1] *= 0.2f;

}

xdsp.Mul_V2_S2(dest, n, 0.1f, 0.2f);

Copying two interleaved vectors to non-inverleaved vectors:

for (int i = 0; i < n; i++)

{

 dest0[i] = src[i*2+0]

 dest1[i] = src[i*2+1]

}

xdsp.Copy_V2N_V2(dest0, dest1, src, n);

V2N = Vector, 2 channels, Non-interleaved

Calculating vector of absolute values of a vector of complex numbers:

for (int i = 0; i < n; i++)

 dest[i] = sqrt(src_real[i] * src_real[i] + src_imag[i] * src_imag[i]);

xdsp.Abs_V_VCN(dest, src_real, src_imag, n);

VCN = Vector Complex Non-interleaved

